Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(37): 25639-25653, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37721171

RESUMO

In the present study, synchrotron-based X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS) and X-ray excited optical luminescence (XEOL) have been used to investigate the induced defect states in metal oxide nanomaterials. Specifically, two synthesis approaches have been followed to develop unique nano-sized peanut-shaped (N-ZnO) nanostructures and micron-sized hexagonal rods (M-ZnO). XANES analysis at the Zn K-edge revealed the presence of defect states with a divalent oxidation state of zinc (Zn2+) in a tetrahedral structure. Furthermore, XAS measurements performed at the Zn L3,2-edge and O K-edge confirm higher oxygen-related defects in M-ZnO, while N-ZnO appeared to have a higher concentration of surface defects due to size confinement. Moreover, the in-line XEOL and time dependent-XEOL measurements exposed the radiative excitonic recombination phenomena occurring in the band-tailing region as a function of absorption length, X-ray energy excitation, and time. Based on the chronology developed in the defect state improvement, a possible energy band diagram is proposed to accurately locate the defect states in the two systems. Furthermore, the increased absorption intensity at the Zn L3,2-edge and the O K-edge under the UV lamp suggests delayed recombination of electrons and holes, highlighting their potential use as photo catalysts. The photocatalytic activity degrading the rhodamine B dye established M-ZnO as a superior catalyst with a rapid degradation rate and significant mineralization. Overall, this work provides valuable insights into ZnO defect states and provides a foundation for efficient advanced materials for environmental or other optoelectronic applications.

2.
Hum Genomics ; 17(1): 49, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37303042

RESUMO

BACKGROUND: Individuals infected with SARS-CoV-2 vary greatly in their disease severity, ranging from asymptomatic infection to severe disease. The regulation of gene expression is an important mechanism in the host immune response and can modulate the outcome of the disease. miRNAs play important roles in post-transcriptional regulation with consequences on downstream molecular and cellular host immune response processes. The nature and magnitude of miRNA perturbations associated with blood phenotypes and intensive care unit (ICU) admission in COVID-19 are poorly understood. RESULTS: We combined multi-omics profiling-genotyping, miRNA and RNA expression, measured at the time of hospital admission soon after the onset of COVID-19 symptoms-with phenotypes from electronic health records to understand how miRNA expression contributes to variation in disease severity in a diverse cohort of 259 unvaccinated patients in Abu Dhabi, United Arab Emirates. We analyzed 62 clinical variables and expression levels of 632 miRNAs measured at admission and identified 97 miRNAs associated with 8 blood phenotypes significantly associated with later ICU admission. Integrative miRNA-mRNA cross-correlation analysis identified multiple miRNA-mRNA-blood endophenotype associations and revealed the effect of miR-143-3p on neutrophil count mediated by the expression of its target gene BCL2. We report 168 significant cis-miRNA expression quantitative trait loci, 57 of which implicate miRNAs associated with either ICU admission or a blood endophenotype. CONCLUSIONS: This systems genetics study has given rise to a genomic picture of the architecture of whole blood miRNAs in unvaccinated COVID-19 patients and pinpoints post-transcriptional regulation as a potential mechanism that impacts blood traits underlying COVID-19 severity. The results also highlight the impact of host genetic regulatory control of miRNA expression in early stages of COVID-19 disease.


Assuntos
COVID-19 , MicroRNAs , Humanos , COVID-19/genética , SARS-CoV-2/genética , Genômica , MicroRNAs/genética , RNA Mensageiro
3.
Multimed Tools Appl ; : 1-38, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37362638

RESUMO

A drastic change in communication is happening with digitization. Technological advancements will escalate its pace further. The human health care systems have improved with technology, remodeling the traditional way of treatments. There has been a peak increase in the rate of telehealth and e-health care services during the coronavirus disease 2019 (COVID-19) pandemic. These implications make reversible data hiding (RDH) a hot topic in research, especially for medical image transmission. Recovering the transmitted medical image (MI) at the receiver side is challenging, as an incorrect MI can lead to the wrong diagnosis. Hence, in this paper, we propose a MSB prediction error-based RDH scheme in an encrypted image with high embedding capacity, which recovers the original image with a peak signal-to-noise ratio (PSNR) of ∞ dB and structural similarity index (SSIM) value of 1. We scan the MI from the first pixel on the top left corner using the snake scan approach in dual modes: i) performing a rightward direction scan and ii) performing a downward direction scan to identify the best optimal embedding rate for an image. Banking upon the prediction error strategy, multiple MSBs are utilized for embedding the encrypted PHR data. The experimental studies on test images project a high embedding rate with more than 3 bpp for 16-bit high-quality DICOM images and more than 1 bpp for most natural images. The outcomes are much more promising compared to other similar state-of-the-art RDH methods.

4.
Int J Biol Macromol ; 244: 125303, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37311516

RESUMO

The proposed research outlines a facile method to synthesize Silver Chromate/reduced graphene oxide nanocomposites (Ag2CrO4/rGO NCs) with a narrow dissemination size for the ecological treatment of hazardous organic dyes. The photodegradation performance toward the decontamination of model artificial methylene blue dye was assessed under solar light irradiation. The crystallinity, particle size, recombination of photogenerated charge carriers, energy gap and surface morphologies of synthesized nanocomposites were determined. The experiment objective is to use rGO nanocomposites to increase Ag2CrO4 photocatalytic efficiency in the solar spectrum. Tauc plots of ultraviolet-visible (UV-vis) spectrum were used to calculate the optical bandgap energy of the produced nanocomposites ∼1.52 eV, which resulted in a good photodegradation percentage of ∼92 % after 60 min irradiation of Solar light. At the same time, pure Ag2CrO4 and rGO nanomaterials showed ∼46 % and âˆ¼ 30 %, respectively. The ideal circumstances were discovered by investigating the effects of several parameters, including catalyst loading and different pH levels, on the degradation of dyes. However, the final composites maintain their ability to degrade for up to five cycles. According to the investigations, Ag2CrO4/rGO NCs are an effective photocatalyst and can be used as the ideal material to prevent water pollution. Furthermore, antibacterial efficacy for the hydrothermally synthesized nanocomposite was tested against gram-positive (+ve) bacteria viz. Staphylococcus aureus and gram-negative (-ve) bacteria viz. Escherichia coli. The maximum zone of inhibition for S. aureus and E. coli were 18.5 and 17 mm, respectively.


Assuntos
Antibacterianos , Nanocompostos , Antibacterianos/farmacologia , Antibacterianos/química , Esgotos , Escherichia coli , Staphylococcus aureus , Nanocompostos/química
5.
Entropy (Basel) ; 25(4)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37190351

RESUMO

Reversible data hiding (RDH), a promising data-hiding technique, is widely examined in domains such as medical image transmission, satellite image transmission, crime investigation, cloud computing, etc. None of the existing RDH schemes addresses a solution from a real-time aspect. A good compromise between the information embedding rate and computational time makes the scheme suitable for real-time applications. As a solution, we propose a novel RDH scheme that recovers the original image by retaining its quality and extracting the hidden data. Here, the cover image gets encrypted using a stream cipher and is partitioned into non-overlapping blocks. Secret information is inserted into the encrypted blocks of the cover image via a controlled local pixel-swapping approach to achieve a comparatively good payload. The new scheme MPSA allows the data hider to hide two bits in every encrypted block. The existing reversible data-hiding schemes modify the encrypted image pixels leading to a compromise in image security. However, the proposed work complements the support of encrypted image security by maintaining the same entropy of the encrypted image in spite of hiding the data. Experimental results illustrate the competency of the proposed work accounting for various parameters, including embedding rate and computational time.

6.
Chemosphere ; 307(Pt 1): 135575, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35798152

RESUMO

Vanadium-doped α-Fe2O3 nanoparticles (VFO nanoparticles) were prepared by polyol-assisted hydrothermal method. The impact on the structure, optical, magnetic and photocatalytic properties of α-Fe2O3 nanoparticles were studied by varying the vanadium concentration from 1 to 5%. XRD analysis confirms the presence of hematite phase with hexagonal structure and estimates the nanocrystals size as ∼26-38 nm. FESEM and TEM reveal the formation of 3D flower-like morphology bundled with 2D nanoflakes. The estimated band gap energy was in the range 2.01 eV-2.12 eV. XPS study shows the presence of vanadium in V4+ oxidation state in VFO nanoparticles. VSM study shows a non-saturated hysteresis loop with weak ferromagnetic behavior for all the VFO nanoparticles. 5% V doped α-Fe2O3 nanoparticles (5%VFO nanoparticles) exhibited superior visible light driven photocatalytic activity compared to other samples.


Assuntos
Nanopartículas , Vanádio , Luz , Nanopartículas/química , Polímeros , Vanádio/química
7.
Chemosphere ; 287(Pt 3): 132050, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34583295

RESUMO

Exploring highly efficient visible-light-driven photocatalyst for the elimination organic pollutants is a great concern for constructing sustainable green energy systems. In the current work, a novel hybrid ternary WO3@g-C3N4@MWCNT nanocomposites have been fabricated for visible-light-driven photocatalyst by self-assembly method. The as-prepared photocatalyst was examined by XRD, Raman, FESEM, HRTEM, XPS EDS, EIS, UV-visible DRS, and PL analysis. The experimental results revealed that the photocatalytic activity of WO3@g-C3N4@MWCNT nanocomposites on the degradation of Tetracycline (TC) is 79.54% at 120 min, which is higher than the binary WO3@g-C3N4 composite and pristine WO3. The improved degradation performance towards TC is recognized for its higher surface area, intense light absorption towards the visible region, and enhanced charge separation efficiency. Consequently, the fabricated catalyst endows a promising application for antibiotic degradation.


Assuntos
Nanocompostos , Tetraciclina , Antibacterianos , Catálise , Luz
8.
J Oral Maxillofac Pathol ; 25(3): 533-536, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35281164

RESUMO

Basaloid squamous cell carcinoma (BSCC) is a rare variant of squamous cell carcinoma characterized by a conglomerate of clinically aggressive course and disparate histopathological features. It is frequently seen in upper aerodigestive tract area. Histopathologically, it is biphasic and composed of two types of tumor cells, namely basaloid and squamous cells. Tumor markers, namely, BerEp4, epithelial membrane antigen and p53 are used in this case to differentiate from similar tumors which impersonate BSCC histologically but differ prognostically. We report a case of BSCC in a 48-year-old female patient, involving the lateral border of the tongue with an exhaustive picture of its histological and immunohistochemical appearance.

9.
RSC Adv ; 10(7): 3796-3804, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35492623

RESUMO

Herein, we report the chemiresistive gas and humidity sensing properties of pristine and nickel-doped tin oxide (Ni-SnO2) gas sensors prepared by a microwave-assisted wet chemical method. The structural and optical properties are characterised using X-ray diffraction, scanning electron microscopy, scanning transmission electron microscopy, ultraviolet spectroscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The structural elucidation and morphology analyses confirm a particle size of 32-46 nm, tetragonal rutile crystal structure and small cauliflower-type surface appearance. Nickel doping can tune the structure of NPs and morphology. The tested carbon dioxide gas and humidity sensing properties reveal a rapid sensing performance with high-to-moderate sensitivity. Also, the materials favour gas sensing because their sensitivity is enhanced with the increase in nickel concentration. The sensing results suggest that nickel is a vibrant metal additive to increase the gas sensitivity of the sensor. However, nickel doping decreases the electron density and increases the oxygen vacancies. Ultimately, the gas sensor produces highly rapid sensing with a response time of 4 s.

10.
RSC Adv ; 10(23): 13611-13615, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35492979

RESUMO

A sensor displaying a rapid response and high sensitivity was developed by following a simple route. Ionic defects in this sensor were explored using X-ray diffraction analysis. In general, such defects arise from a mismatch of ionic radii, which actually improves the sensing performance. SEM and TEM images of the currently produced particles demonstrated negligible agglomeration, which greatly enhanced the flow of water molecules through the particles. The current sensor showed a rapid response to changes in humidity. Its sensing performance was classified into three different ranges of humidity. Of these humidity ranges, the sensor showed the highest sensitivity (8.84 MΩ per %RH) at low relative humidity (10-20% RH). Furthermore, the sensitivity fall off as the RH was increased from 20 to 99%. The sensor showed a rapid response time of 20 s. Also, the sensor showed 92.98% reproducibility and few effects of aging.

11.
J Photochem Photobiol B ; 183: 397-404, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29778020

RESUMO

In the current investigation, TiO2 and TiO2-ZnO (core-shell) spherical nanoparticles were synthesized by simple combined hydrolysis and refluxing method. A TiO2 core nanomaterial on the shell material of ZnO was synthesized by utilizing variable ratios of ZnO. The structural characterization of TiO2-ZnO core/shell nanoparticles were done by XRD analysis. The spherical structured morphology of the TiO2-ZnO has been confirmed through field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) studies. The UV-visible spectra of TiO2-ZnO nanostructures were also compared with the pristine TiO2 to investigate the shift of wavelength. The TiO2-ZnO core/shell nanoparticles at the interface efficiently collect the photogenarated electrons from ZnO and also ZnO act a barrier for reduced charge recombination of electrolyte and dye-nanoparticles interface. This combination improved the light absorption which induced the charge transfer ability and dye loading capacity of core-shell nanoparticles. An enhancement in the short circuit current (Jsc) from 1.67 mA/cm2 to 2.1 mA/cm2 has been observed for TiO2-ZnObased photoanode (with platinum free counter electrode), promises an improvement in the energy conversion efficiency by 57% in comparison with that of the DSSCs based on the pristine TiO2. Henceforth, TiO2-ZnO photoelectrode in ZnO will effectively act as barrier at the interface of TiO2-ZnO and TiO2, ensuring the potential for DSSC application.


Assuntos
Corantes/química , Amarelo de Eosina-(YS)/química , Nanoestruturas/química , Energia Solar , Titânio/química , Óxido de Zinco/química , Fontes de Energia Elétrica , Técnicas Eletroquímicas , Eletrodos , Grafite/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Teoria Quântica , Espectrofotometria , Difração de Raios X
12.
Indian J Surg ; 79(1): 33-37, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28331264

RESUMO

Since the initial description of tropical pyomyositis 130 years ago, this disease continues to retain some mystery for physicians and surgeons. The infrequency, variable epidemiologic and demographic profile, diagnostic dilemmas and limited literature continue to make it an enigma with limited understanding. In the span of nearly 130 years, worldwide English literature search has revealed an average of only two to three reported cases every year globally. We recently managed a case of tropical pyomyositis which posed a clinical and radiologic diagnostic dilemma. The rarity of disease and published literature prompted us to garner demographic and disease characteristics data from historical review of two Pan-Indian journals, with the aim of aiding management. Data has been screened since 1950 from the Medical Journal Armed Forces India (MJAFI) and the Indian Journal of Surgery (IJS), which report cases from different geographical conditions and ethnicity all over the nation. We found only six case reports in the MJAFI, while there was surprisingly no publication regarding pyomyositis in the IJS. We present a case report of a 39-year-old male who developed pyomyositis of the left calf muscle and review published data from these journals over the last 65 years.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...